Glottal Source Estimation from Coded Telephone Speech Using a Deep Neural Network

نویسندگان

  • N. P. Narendra
  • Manu Airaksinen
  • Paavo Alku
چکیده

In speech analysis, the information about the glottal source is obtained from speech by using glottal inverse filtering (GIF). The accuracy of state-of-the-art GIF methods is sufficiently high when the input speech signal is of high-quality (i.e., with little noise or reverberation). However, in realistic conditions, particularly when GIF is computed from coded telephone speech, the accuracy of GIF methods deteriorates severely. To robustly estimate the glottal source under coded condition, a deep neural network (DNN)-based method is proposed. The proposed method utilizes a DNN to map the speech features extracted from the coded speech to the glottal flow waveform estimated from the corresponding clean speech. To generate the coded telephone speech, adaptive multi-rate (AMR) codec is utilized which is a widely used speech compression method. The proposed glottal source estimation method is compared with two existing GIF methods, closed phase covariance analysis (CP) and iterative adaptive inverse filtering (IAIF). The results indicate that the proposed DNN-based method is capable of estimating glottal flow waveforms from coded telephone speech with a considerably better accuracy in comparison to CP and IAIF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep neural network based trainable voice source model for synthesis of speech with varying vocal effort

This paper studies a deep neural network (DNN) based voice source modelling method in the synthesis of speech with varying vocal effort. The new trainable voice source model learns a mapping between the acoustic features and the time-domain pitch-synchronous glottal flow waveform using a DNN. The voice source model is trained with various speech material from breathy, normal, and Lombard speech...

متن کامل

Using Text and Acoustic Features in Predicting Glottal Excitation Waveforms for Parametric Speech Synthesis with Recurrent Neural Networks

This work studies the use of deep learning methods to directly model glottal excitation waveforms from context dependent text features in a text-to-speech synthesis system. Glottal vocoding is integrated into a deep neural network-based text-to-speech framework where text and acoustic features can be flexibly used as both network inputs or outputs. Long short-term memory recurrent neural networ...

متن کامل

Generative Adversarial Network-Based Glottal Waveform Model for Statistical Parametric Speech Synthesis

Recent studies have shown that text-to-speech synthesis quality can be improved by using glottal vocoding. This refers to vocoders that parameterize speech into two parts, the glottal excitation and vocal tract, that occur in the human speech production apparatus. Current glottal vocoders generate the glottal excitation waveform by using deep neural networks (DNNs). However, the squared error-b...

متن کامل

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

Effects of Training Data Variety in Generating Glottal Pulses from Acoustic Features with DNNs

Glottal volume velocity waveform, the acoustical excitation of voiced speech, cannot be acquired through direct measurements in normal production of continuous speech. Glottal inverse filtering (GIF), however, can be used to estimate the glottal flow from recorded speech signals. Unfortunately, the usefulness of GIF algorithms is limited since they are sensitive to noise and call for high-quali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017